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Abstract

Hierarchical Bayesian inference in parameterised models offers an ap-
proach for controlling complexity. In this paper we utilise a novel prior
for the leaning of a model’s structure. We call the prior node relevance de-
termination. It is applicable in a range of models including sigmoid belief
networks and Boltzmann machines. We demonstrate how the approach
may be applied to determine structure in a multi-layer perceptron.

1 Introduction

Bayesian inference provides one approach to optimising model complexity. In
mazximum likelihood learning we find a particular parameterisation, 6, for our
model, M, from the set of all possible parameterisations, 8, through maximising
the log likelihood of the data:

N
Inp(D[f, M) = Zlnp(xn|07M)' (1)

n=1

Here the data-set, D, has been assumed to be composed of N independent
observations x,. In Bayesian learning an inference process replaces this op-
timisation. Rather than considering point estimates, 8, of the parameters we
treat them as stochastic variables. We then infer the posterior distribution of
the parameters given the data. To determine this posterior we are also required
to define a prior distribution over the parameters, p(f). Once we have selected
a prior we marginalise the parameters and obtain the model likelihood

p(DIM) = / p(DI6, M)p(8)de. (2)

This model likelihood can then be made use of in model selection.

When the parameters are continuous, a common choice for the prior is a
spherical, zero mean, Gaussian distribution. More complex priors are also possi-
ble, the parameters may be placed into G vectors, 8, each of which is associated
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with a separate hyper-parameter o,: p(fla) = HG (ag g) exp (—%0309) .

g=1 2
Here K is the number of parameters in group g. In its most flexible form such a
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prior might contain a hyper-parameter for every parameter [7]. Normally, how-
ever, the groups will be larger. In the context of neural networks, for example,
the weights may be grouped according to the role they play in the network, e.g.
ARD priors [5, 4].

2 Node Relevance Determination

In this paper we present a novel prior which takes the grouping of weights a
stage further. We consider a prior which places each parameter in two groups
and utilise this prior to optimise model structure.

We will apply our prior to a two-layer feed-forward neural network with I in-
put nodes, H hidden nodes and a single output node. The network function may
therefore be written as f(x,w) = Ethl vpg(ulx), where w = {u; ... up, v}
is a vector representing the parameters or ‘weights’ of the network. The input
to hidden weights are represented by a matrix, U, of H vectors uy, each vector
being the weights that ‘fan-in’ to hidden unit h. v is the vector of the hidden
to output weights, consisting of H elements v,. We account for ‘biases’ by
considering additional input and hidden nodes whose values are taken to be
one at all times. The activation function g(-) is often taken to be a hyperbolic
tangent, for reasons of tractability though we use an alternative, the cumulative
Gaussian distribution function®.

We model the data-set, D = {x,,,t,})_;, as being derived from a underlying
true function y(x) with Gaussian noise added. This leads us to consider a
likelihood function of the form:

N/2 N
s = () exp<§z o >>2>, ®)

where [ is a parameter governing the inverse noise variance. We implement
the node relevance determination prior by associating a hyper-parameter with
each node in the network. We split the hyper-parameters into three sub-groups:
aD af) and a9 the sub-groups contain the hyper parameters associated
with the input nodes, hidden nodes and output node respectively.

Our prior then takes the form

I H (1) (H) 1
p(W|a(1),a(H)7a(O) HH( ) exp{ QQ(I)agH)uzh}
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where u;;, and v; are elements of the matrix U and the vector v. We term this
prior node relevance determination (NRD) because its objective is to determine
the relevance of each node in the model.

tg(@) = /2 [ exp(—7) dt




We may treat the hyper-parameters with a second level of Bayesian inference
for which we utilise the following hyper-prior: p(a) = [T2/ "' gam(ey]a, b).
where gam(-) is the gamma distribution?. Note that exact Bayesian inference
in this model is intractable. We therefore turn to variational methods to make

progress.

2.1 The Variational Approach

Consider the bound on the likelihood obtained through the introduction of a
variational distribution ¢(w,a, j3),

p(D7 W, o, ﬁ)
q(w,a, 3)

We now assume that the variational distribution factorises, ¢, (w,a, () =
¢w(W)q5(3)qan (@) gy (@) g 0) (@(©)). As we are constraining our inves-
tigations to the treatment of the distribution, g, we only consider the free-form
optimisation of that distribution [3, 1] leading to go (a) o exp (In p(wla)p(a)),
where we have utilised ( - ) o to represent an expectation with respect to the
distribution gq. The free-form optimisation gives

Inp(D) > /q(w,a,ﬁ) In dw da df. (5)

H
Goan (@) = [T T (ed™1alD b yans). (6)

i=1
Similar forms for the input and output hyper-parameters may also be obtained.

The parameters of these g-distributions are found as
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In the above equation the variable averages, (-), are over their respective dis-
tributions. In the case of the likelihood function we defined for the regression
neural network we may also calculate bound (5) (see [2]). This enables us to
monitor convergence of the optimisation and additionally to perform model
comparison.

2gam(7|a, b) = F(a) 7L exp(—br).



2.2 Expectation-Maximisation Structure Optimisation

Optimisation of the lower bound on p(D|M) with respect to the g-distributions
can be viewed, in the context of the EM-algorithm, as an approximate expec-
tation step. This expectation step can then be followed by a maximisation step
which maximises the lower bound on p(D|M) with respect to the structure of
the model M. This could involve the removal of individual weights, but here
we consider only node removal. We use the following heuristic to select a node
to remove. If we wish to remove a node in the hidden layer we first compute
bound (5). We then compute the effective number of parameters® for each hid-
QDN /(D WD\ (4O

den node, v, =3, <<u’2}>>§ulh>2> + <<':;2L>>§Uh>2> (see [4]). We remove the node
with the lowest effective number of parameters and re-evaluate the bound. If it
has increased we continue training with the new structure; otherwise we replace
the node. The same process can be undertaken for the input nodes.

3 Results

In all the experiments the variational distribution governing the parameters w
was chosen to be a diagonal covari-
ance Gaussian for its ease of im-
plementation. Gamma priors were
placed over the parameter govern-
ing noise variance, 3. The posterior
distribution of which was then deter-
mined by a variational free-form op-
timisation.
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3.1 Toy Problem 50 100 150 200 250

To determine the effectiveness of the N

node-removal prior, we first studied

a simple problem involving samples Figure 1: The average determined number
from a sine wave. We took N values of hidden nodes vs. number of data for
from the function 0.4sin(27x). The the toy problem. The error bars show the
x value was sampled from a uniform gtandard deviation of the number of hidden
distribution over the interval? (0, 1). podes.

We added Gaussian noise of variance

0.0025 to the funciton output. Using this data a regression neural network
with five hidden nodes was trained using the node relevance prior. We chose
very broad hyper-priors by setting ag) = aSXH) = a&o) =+/3x10=% and bg) =
b((lH) = b&o) =1 x 1073, A quasi-newton optimiser was used to optimise gy.
Optimisation was followed by an update of the posterior of § and a. We
then attempted to optimise structure, in the manner described in the previous

3 Also known as the number of well determined parameters.
4This is one period of oscillation.



Table 1: Performance of different priors on the data-sets.

PRIOR TYPE | SUNSPOT | TECATOR
SINGLE 0.190 (12 x8 x 1) | 0.549 (10 x 8 x 1)
GROUPED | 0.194 (12x 8 x 1) | 0.540 (10 x 8 x 1)
ARD 0.153 (3x 8 x 1) | 0.539 (10 x 8 x 1)
NRD 0.163 (5x5x1) | 0532 (10 x 2 x 1)

section, by cycling through these operations ten times. The experiment was
repeated for N = 5, 10, 25, 50, 100, 200. Ten networks were trained for N
using a different set of samples from the function. The results are summarised
in Figure 1, where the average number of determined hidden nodes is plotted
against the number of data-points.

3.2 Real Data

Our first real world data-set involves the annual average® of sunspots from
1700 to 1920. This time series has served as a benchmark in the statistical
literature [8]. The number of hidden nodes was initially taken to be eight
and the input window was chosen arbitrarily to be 12, i. e. we modelled
Ty = f(Tp-1,...Tn_12). Training and test set selection was as in [9]. We
also assessed the performance of our approach on the Tecator data-setS. This
benchmark was first used by Thodberg [6] to demonstrate the benefits of an ev-
idence approximation based Bayesian approach compared to the early stopping
technique”.

The optimisations, for both data-sets, were undertaken in a similar man-
ner to those of the toy-problem. The NRD network with the highest model
likelihood on the Tecator data used two hidden nodes and all the input nodes.
For the sunspot data, the NRD network with the highest model likelihood used
three hidden nodes and five input nodes. The input nodes used to predict® z,,
Were Ty, _1,%n_2,Tn_5,Ty_7 and x,_g. For the sunspot data networks were ini-
tialised with I = 12 and H = 8, for the Tecator data I = 10 and H = 8. Table 1
summarises the results obtained. Alongside each result is the structure of the
networks obtained in the form I x H x 1. The sunspot results quote the nor-
malised mean squared error, however for the Tecator results we follow Thodberg
[6] in our use of the standard error of prediction to enable comparisons. The
priors we tried are named ‘single’ which considers only one hyper-parameter,
‘grouped’ which groups the weights according as input-hidden layer, hidden
biases, hidden-output layer and output biases; ARD which further groups the

5The data are daily, monthly and annually reported by the Royal Observatory of Belgium
and can be found at http://www.oma.be/KSB-O0RB/SIDC/sidc_txt.html.

6The data are recorded on a Tecator Infratec Food and Feed Analyser working in the
wavelength range 850 - 1050 nm by the Near Infrared Transmission (NIT) principle.

"The data-set is available from http://temper.stat.cmu.edu/datasets/Tecator

8Note that in time series prediction it is normal to try and select optimal windows of
inputs. Normally a window of size W would include the inputs from n — 1 ton — W.



input-hidden layer weights according to the input node with which they are
associated and the NRD prior described above.

4 Discussion

We have introduced a novel form of prior for determining the relevance of
individual nodes or variables in the network and showed how it may be used
to determine structure automatically.

When implemented with the noisy sine data, higher complexity (in the form
of more hidden nodes) was utilised by the algorithm as more data-points were
presented to the model. This behaviour is in line with our expectations. Model
complexity is able to increase as more information is provided.

In the benchmark data-sets we studied, the performance of the NRD prior
was comparable with that of other widely used approaches. However, the NRD
prior was able to discover more compact representations of the data.
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